Computing Community Consortium Blog

The goal of the Computing Community Consortium (CCC) is to catalyze the computing research community to debate longer range, more audacious research challenges; to build consensus around research visions; to evolve the most promising visions toward clearly defined initiatives; and to work with the funding organizations to move challenges and visions toward funding initiatives. The purpose of this blog is to provide a more immediate, online mechanism for dissemination of visioning concepts and community discussion/debate about them.

“Return of the Human Computers”

December 2nd, 2011 / in research horizons / by Erwin Gianchandani

An interesting piece about the future of human computing in the print edition of The Economist tomorrow — and it features the thinking of CCC Council member Eric Horvitz along with several others:

Return of the human computers [image by Belle Mellor via The Economist].…Over the past few years, human computing has been reborn. The new generation of human computers carry out different tasks, but they mirror their predecessors in many other ways. They are being drafted in to perform tasks that computers cannot. They are employed in large numbers and are organised into streamlined workflows. And, as was the case in the age before electronic computers, their output is combined to generate results that could not easily be produced in any other way.


In one proof-of-principle experiment, published earlier this year, human computers were used to create encyclopedia entries. Like performing mathematical calculations, this is a skilled job, but one that can be broken down into simpler parts, such as initial research, writing and editing. Aniket Kittur and colleagues at Carnegie Mellon University in Pittsburgh, Pennsylvania created software, known as CrowdForge, that manages the process. It hands out tasks to online workers, which it contacts via Mechanical Turk, an outsourcing website run by Amazon. The workers send their work back to CrowdForge, which combines their output to produce surprisingly readable results…


Several American start-ups are operating similar workflows…


Much more is to come. In old-fashioned computing offices, workflows were co-ordinated by senior staff, often mathematicians, who had worked out how to deconstruct the complex calculations the computers were tackling. Now silicon foremen such as CrowdForge oversee human computers. These algorithms, which co-ordinate workers by plugging into Mechanical Turk and other online piecework platforms, are relatively new and are likely to get considerably more sophisticated. Researchers are, for example, creating software to make it easier to assign tasks to workers—or, to put it another way, to program humans.


Eric Horvitz, a researcher at Microsoft’s research labs in Redmond, Washington, has considered how such software could be put to use. He imagines a future in which algorithms co-ordinate an army of human workers, physical sensors and conventional computers. In the event of a child going missing, for example, an algorithm might assign some volunteers to search duties and ask others to examine CCTV footage for sightings. The system would also trawl local news reports for similar cases. These elements would be combined to create a cyborg detective.


This sounds terribly futuristic, and rather different to the pen-and-paper human computation of the 19th century. But David Alan Grier, a historian of computing at George Washington University in Washington, DC, thinks that the architects of the new systems could learn a lot by studying the old ones. He points out that Charles Babbage, the designer of an early mechanical computer, gave much thought to reducing the errors that human computers made. Babbage realised that duplicating tasks and comparing the results was not enough, because different workers tended to make the same mistakes. A better solution was to find different ways to perform the same calculation. If two methods produce the same answer, the result is much less likely to be flawed, Babbage reasoned.


There are many more such useful tips in the historical record, says Dr Grier. Human-computing pioneers also wrote a lot about how best to break a complex calculation into sub-tasks that are completely independent of each other, for example. “There are all sorts of hints in the old literature about what’s useful,” he says. He is often invited to human-computing conferences at which he likes to chide researchers for overlooking such lessons from this forgotten but intriguing early chapter of computer history.

Read the full article here — and share your thoughts on the future of human computing in the space below.

And be sure to check out the rest of The Economist‘s Dec. 3rd Technology Quarterly issue, in which this article appeared.

(Contributed by Erwin Gianchandani, CCC Director)

“Return of the Human Computers”