NIH’s Strategic Vision for Data Science: Enabling a FAIR-Data Ecosystem

Susan Gregurick, Ph.D.
Associate Director for Data Science
Office of Data Science Strategy

March 24th, 2020
NIH supports many different biomedical research communities with diverse sets of data.
Data Science Drivers

Democratization of computation, workflows and tools → more researchers can participate in data science

Rise of ML/DL/AI → well annotated data as a valuable resource

Digital Data Governance → governance and provenance technologies to electronically manage data consent for appropriate reuse

Large scale graph and analytics → data/information abstraction, on a large scale, is possible
Computing Drivers

Heterogenous computing allows a convergence of physics based and data analytic based simulations.

Integration of algorithms and computing, with microelectronics ➔ rise of edge/fog computing.

Advances in Quantum Information, on a rapid timescale, unlocks new opportunities.

Development of a computing-data ecosystem

Illustration: Sara Orlov/Avis

Scientists in Chicago are trying to create the embryo of the first quantum internet.
This proliferation of data, and the accompanying computing resources and new algorithms, brings new opportunities for discovery, as well as new challenges.
Genetic & dietary effects in COPD

Chronic Obstructive Pulmonary Disease (COPD) is a significant cause of death in the US, genetic and dietary data are available that could be used to further understand their effects on the disease.

Separate studies have been done to collect genomic and dietary data for subjects with COPD.

Researchers know that many of the same subjects participated in the two studies.

Linking these datasets together would allow them to examine the combined effects of genetics and diet using the subjects present in both studies. However, different identifiers were used to identify the subjects in the different studies.

Challenges

Obtaining access to all the relevant datasets so they can be analyzed

Understanding consent for each study to ensure that data usage limitations are respected

Connecting data from the same subject across different datasets so that the genetic and dietary data from the same subjects can be linked and studied
Global studies

The International epidemiologic Databases to Evaluate AIDS (IeDEA) network assembles data from 7 large regional research cohorts-representing over 500 HIV clinics around the world.

NIH is supporting global research projects like IeDEA that have to collect and integrate data from hundreds of clinics worldwide.

This presents significant data management challenges to ensure that each clinic collects data in a compatible fashion and records the data in a compatible format.

International data access requirements can significantly impact a researcher’s ability to access data collected in another country.

Challenges

Harmonizing data from multiple sources so that it can be integrated and analyzed together.

Data access regulations to govern who can access data and what they can do with it are complex.

National regulations may preclude the use of US-based cloud resources limiting access to data and infrastructure that could support these projects.
Researchers understand the concepts behind FAIR and need guidance on how to put them into practice.

The FAIR principles (Findable, Accessable, Interoperable and Reusable) are familiar to many and have broad support.

However, there is significant confusion about what FAIR means in practice and it can be time consuming and the benefits to the data owner undertaking this ‘extra work’ can be unclear.

Challenges

Prioritizing dataset annotation and curation when it is time consuming and perceived as an added burden.

Selecting metadata to annotate their data that is compatible with other datasets and tools in the ecosystem.

Where to put the data so it can be stored and securely accessed by authorized users (as appropriate).
The Rime of the Ancient Mariner, Samuel Taylor Coleridge

(excerpted)

Day after day, day after day,
We stuck, nor breath nor motion;
As idle as a painted ship
Upon a painted ocean.

Water, water, every where,
And all the boards did shrink;
Water, water, every where,
Nor any drop to drink.
But what if we could.....
the ability to link data in the Framingham Heart Study (NHLBI) with Alzheimer’s health data (NIA) to understand correlative effects in cardiovascular health with aging and dementia.
What if:

- Journal articles could link to repository data sets
- Metadata were computable so that a search for similar datasets was possible
- Analysis tools were linked to datasets, via Github, Bioconductor, Galaxy or other....
IMAGINE... the ability to link electronic health care records with personal data and with clinical and basic research data.
This is the promise of the *NIH Strategic Plan for Data Science*

…and here’s how we will get there.
Making Data **FAIR**

Findable	• must have unique identifiers, effectively labeling it within searchable resources.
Accessible	• must be easily retrievable via open systems and effective and secure authentication and authorization procedures.
Interoperable	• should “use and speak the same language” via use of standardized vocabularies.
Reusable	• must be adequately described to a new user, have clear information about data-usage licenses, and have a traceable “owner’s manual,” or provenance.
Percentage of NIH-Supported Publications in PMC with Data Availability Statements (DAS) and Supplementary Materials (SM)

- DAS only
- SM only
- DAS + SM
- No DAS or SM

Slide courtesy of Kathryn Funk
• **Researchers** with NIH-funded or conducted research projects resulting in the generation of scientific data will be required to submit a Plan

• **Plans** should explain how scientific data generated by a research study will be managed and which of these scientific data will be shared

Community Input Solicited
- 189 submissions from national and international stakeholders

Identified need for appropriate infrastructure
- policy and implementation to go "hand-in-hand"

Develop draft policy for data management and sharing and related guidance

Released draft for community input

Release final policy (summer 2020)
Overview of Sharing Publication and Related Data

NIH strongly encourages open access Data Sharing Repositories as a first choice.

Options of scaled implementation for sharing datasets

<table>
<thead>
<tr>
<th>Datasets up to 2 gigabytes</th>
<th>Datasets up to 20* gigabytes</th>
<th>High Priority Datasets petabytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed Central</td>
<td>Use of commercial and non-profit repositories</td>
<td>STRIDES Cloud Partners</td>
</tr>
</tbody>
</table>
| • PMC stores publication-related supplemental materials and datasets directly associated publications. Up to 2 GB. | • Assign Unique Identifiers to datasets associated with publications and link to PubMed.
• Store and manage datasets associated with publication, up to 20* GB. | • Store and manage large scale, high priority NIH datasets. (Partnership with STRIDES)
• Assign Unique Identifiers, implement authentication, authorization and access control. |
NIH supports many repositories for biomedical data sharing
How to find Data Repositories?

• **BMIC Data Repository Listing**

• **SciCruch/dkNET**
 Organized by repository type and scientific area.
 https://dknet.org/about/Suggested-data-repositories

• **FAIRsharing**
 https://fairsharing.org/

• **DataMed**
 https://datamed.org/
Optimized Funding for NIH Data Repositories and Knowledgebases

Funding Opportunities

• NIH released two funding opportunities on Jan. 17 to support biomedical data repositories and knowledgebases:

 • Biomedical Data Repository (PAR-20-089)
 • Biomedical Knowledgebase (PAR-20-097)
Co-Chairs: Maryann Martone, University of California, San Diego & Shelley Stall, American Geophysical Union

- Learn how generalist repositories see themselves in the larger biomedical data repository landscape.
- Understand how institutional data repositories are creating suites of solutions for their researchers and how they see generalist repositories fitting into this landscape.
- Consider desired characteristics of data repositories and how they relate to institutional expectations of data storage and preservation solutions.
- Explore adoption of common infrastructure, standards, and federated search solutions to enable greater discoverability of NIH research data across federated data repositories.
- Address the role of data curators in ensuring that data and metadata are sufficiently well curated to enhance discovery and enable reuse.
A few takeaways

• “Coopetition” – repositories collaborate on common goals while still maintaining competition on specific features – working together “below the value line”

• Discoverability requires both descriptive metadata and PIDs, with knowledge graphs being potentially powerful ways to discover objects at scale

• Librarians are well-situated and well-trained to advocate for, build awareness, educate, and provide tools to help with reproducibility

• Success requires culture change, not just new tech
Virtual Workshop on Data Metrics

• More than 300 people from around the world joined rich discussion focused on metrics
 • Co-chaired by Daniella Lowenberg, California Digital Library, and Warren Kibbe, Chief Data Officer at Duke Cancer Institute

• Next steps:
 • Continue engaging with community via Ideascale platform
 • Summary Report
Harnessing the power of the cloud
Turning Research Data Into Knowledge and Discovery

The Science and Technology Research Infrastructure for Discovery, Experimentation, and Sustainability (STRIDES) Initiative

- State-of-the-art data storage and computational capabilities
- Training and education for researchers
- Innovative technologies such as artificial intelligence and machine learning

Partnerships with AWS and other commercial providers
GET STARTED WITH THE STRIDES INITIATIVE
Explore the Use of Cloud Environments at Your Institution

1. **SELECT A STRIDES INITIATIVE PARTNER**
 Learn from the NIH STRIDES Initiative team about the different industry-leading STRIDES Initiative partners available to your institution.

2. **SET UP YOUR ACCOUNT**
 Your NIH-funded researchers with active grants will work with your selected STRIDES Initiative partner to set up a STRIDES Initiative account.

3. **USE THE CLOUD FOR BIOMEDICAL RESEARCH**
 Your NIH-funded researchers can now begin using the cloud environment for computation, storage, and data analysis.

4. **ENROLL IN THE STRIDES INITIATIVE**
 Engage with your preferred STRIDES Initiative partner to begin the enrollment process for your institution and start experiencing the available services and benefits.

5. **CONFIGURE YOUR CLOUD ENVIRONMENT**
 Your STRIDES Initiative partner will equip your NIH-funded researchers with the resources they need to set up their cloud environment.

Cloud training opportunities and professional services are available on an ongoing basis.

NIH | National Institutes of Health
www.data science.ni h.gov/str id e s | str id e s@nih.gov
STRIDES highlights by the numbers

13 NIH ICs participating

16 Extramural Participating Institutions

124 Programs/projects onboarded

>400 People trained

45 Petabytes stored

7.1M Total compute hours

$3.9M Dollars saved (cost avoidance)
Supplements to Enhance Software Tools for Open Science

Notice of Special Interest (NOSI) **NOT-OD-20-073**.

- Supplements to Support Enhancement of Software Tools for Open Science
- Up to $150K direct costs. Supplement applications **due May 15**
- Must address data science goals but in scope of parent grant
- 20 Institutes and 3 centers (FIC, NCATS, NCCIH)
- R01, R03, R21, U01, R00, R33, R35, R37, R61
- **Contact:** Jess Mazerik, ODSS

Goals

- Enhance software engineering of valuable scientific tools
 - New collaborations between biomedical researchers & software engineers
- Make research tools “cloud-ready”
 - Working with STRIDES initiative is encouraged but not required
Examples of Datasets in the STRIDES Cloud

• NHLBI Framingham Heart Study
• All of Us Research Program
• NCI Genomic Data Commons
• **NCBI data resources (12 PB!)**
• NHLBI Trans-Omics for Precision Medicine (TOPMed) Program
• NHGRI AnVIL Platform
• Gabriella Miller Kid’s First
And Many More

• **Moved over 45 PB of data into Google and AWS**
 ➢ Largest biomedical data set available for biomedical research
 ➢ 1 PB is equivalent to over 4,000 digital photos per day, over your entire life

• Next year we anticipate well over 50 PB of data in the cloud
 o We can search across this amount of data using advance AI algorithms
Connecting our data platform resources
NIH leverages Platform Technologies

NIH creates infrastructure that integrates data storage, data management, and computational tools in a single cloud environment, taking full advantage of commercial platform providers who are expert in this space.
Single ‘Sign-on’ Across NIH Data Resources

- Streamlined login for authorization of controlled-access data
- Make use of industry standard technology (web tokens)
- Flexible for different NIH needs: ‘do no harm to existing systems’

End goal: NIH-wide system for a consistent method to access data across NIH data resources
NIH Researcher Auth Service: GOALS

Log into an analytic platform one time, to seamlessly analyze data stored in one or multiple repositories

Log into a system with ORCiD credentials, to access data requested with an eRA Commons ID

Access audit logs for a given dataset, to rapidly respond to a data management incident

First Milestone: Successfully integrated Globus’ login functionality with a new NIH Login capability that uses OpenID Connect (OIDC) for electronic Research Administration (eRA) Commons accounts.
Integrating healthcare data and clinical data
FHIR® Standard and Application Program Interface

- Developed by Health Level Seven International (HL7), a non-profit organization
- Designed specifically for exchanging electronic health care record data
- For patients and providers, it can be applied to mobile devices, web-based applications, and cloud services
- FHIR is already widely used in hundreds of applications across the globe for the benefit of providers, patients and payers
Sharing Clinical Data for Research Using FHIR

Clinical

- EHRs

Vocabulary Standards

Research

- Research Database

Common Data Models
Common Data Elements

Messaging Standards
Increasing Availability of High-Quality Data Using FHIR

- Two pilot projects
 1. Development and Testing of FHIR Tools for Researchers
 2. Advancing Exchange of Phenotypic Information in Genomic Interpretation through FHIR

Request for Information

• Overall support for NIH’s direction

• Noted challenges in using FHIR “as is” for research

• Recommendations regarding
 • Engagement
 • Tool development
 • R&D
 • Related policies
Let’s create a bright future
Coming in 2020...

Coding it Forward

- 19 fellows from 13 universities across 13 institutes, centers, offices
- Masters’ and undergraduate
- Majors in information systems, cybersecurity, poly sci, stats, data science, math, chem, public policy, computer science, electrical engineering, quantitative social science, biological science, information science, econ

ON HOLD: Graduate Data Science Summer Program

- 13 Masters’ level fellows from 13 universities in labs across 6 institutes and centers
- Majors in math, biostats, data science, health informatics, nursing, bioengineering, bioinformatics, public health
NIH Data and Technology Advancement (DATA) National Service Scholar Program

- One- or two-year national service program with high-impact NIH projects
- Seeking industry data and computer scientists, experts from related fields
- Expecting 5+ fellows in first cohort, starting in summer 2020

Applications due April 30

- Submit CV and cover letter including vision statement and projects of interest to datascience@nih.gov.
- Eligibility: doctoral degree (required) and industry experience (strongly preferred)
- Women and individuals from underrepresented groups are encouraged to apply.

https://datascience.nih.gov/data-scholars
DATA Scholars Potential Projects

<table>
<thead>
<tr>
<th>NIMH</th>
<th>NIA</th>
<th>NCI</th>
<th>NIBIB</th>
<th>FIC</th>
<th>NINDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyze neuroscience research by moving high-performance brain imaging analysis to the cloud</td>
<td>Unraveling the Alzheimer’s Disease Genome using Artificial Intelligence, Machine Learning, and Deep Learning</td>
<td>Supporting Cancer Knowledge Extraction through the Cancer Research Data Commons</td>
<td>Accelerating the Clinical Adoption of Machine Intelligence Applications in Medical Imaging</td>
<td>Harnessing Data Science for Health Discovery and Innovation in Africa</td>
<td>Expanding Theories of Brain Circuits Using Knowledge Integration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NIEHS</th>
<th>NHLBI</th>
<th>OD OSC</th>
<th>NHGRI</th>
<th>NLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advancing Interoperability for Environmental Health</td>
<td>Broadening the Impact of Data Resources for Heart, Lung, Blood and Sleep Research</td>
<td>Innovative Solutions for Data Harmonization, Mobile Analytics, and End-User Support</td>
<td>Interoperability of NIH Cloud-Based Platforms for Genomics Research</td>
<td>Architecting search across petabyte-scale genomic sequence</td>
</tr>
</tbody>
</table>
Strategic Plan for Data Science: Goals and Objectives

Data Infrastructure
- Optimize data storage and security
- Connect NIH data systems

Modernized Data Ecosystem
- Modernize data repository ecosystems
- Support storage and sharing of individual datasets
- Better integrate clinical and observational data into biomedical data science

Data Management, Analytics, and Tools
- Support useful, generalizable, and accessible tools
- Broaden utility of, and access to, specialized tools
- Improve discovery and cataloging resources

Workforce Development
- Enhance the NIH data science workforce
- Expand the national research workforce
- Engage a broader community

Stewardship and Sustainability
- Develop policies for a FAIR data ecosystem
- Enhance stewardship

https://datascience.nih.gov
VISION

a modernized, integrated, FAIR biomedical data ecosystem
Office of Data Science Strategy

www.datascience.nih.gov

A modernized, integrated, FAIR biomedical data ecosystem
NIH staff who deserve all the credit

- **STRIDES**: Andrea Norris, Nick Weber and NMDS team
- **Linking Publications to Datasets**: Jim Ostell and NCBI Implementation Team
- **Data Repository and Knowledgebase Resources**: Valerie Florance, Valentina di Francesco, Ajay Pillai, Qi Duan, Dawei Lin, Christine Colvis, Jennie Larkin, Ravi Ravichandran, and James Coulombe
- **FHIR Pilots**: Teresa Zayas-Caban, Denise Warzel, Kerry Goetz, Ken Wiley, Alison Cernick, Kenith Wilkins, Carolina Mendoza-Puccini, Matt McAuliffe, and Belinda Seto
- **Criteria for Open Access Data Sharing Repositories**: Mike Huerta, Dawei Lin, Maryam Zaringhalam, Lisa Federer and BMIC Team
- **Pilot for Scaled Implementation for Sharing Datasets**: Ishwar Chandramouliswaran, Lisa Federer, Maryam Zaringhalam, and Jennie Larkin
- **Coding-it-Forward Fellows Summer Program & DATA Scholars Program**: Jess Mazerik, Wynn Meyer
- **Graduate Data Science Summer Program**: Sharon Milgram and Phil Ryan
Stay Connected

@NIHDataScience

/NIH.DataScience

www.datascience.nih.gov